A New Method for Target Detection in Hyperspectral Imagery Based on Extended Morphological Profiles

نویسندگان

  • Antonio Plaza
  • Pablo Martínez
  • Rosa Pérez
چکیده

Hyperspectral remote sensing increases the detectability of pixeland subpixel-sized targets by exploiting the finer detail in the spectral signatures. In this paper, we describe a new unsupervised algorithm for the detection of both full pixel and mixed pixel targets in hyperspectral imagery. The proposed method automatically resolves targets by using extended mathematical morphology operations. The performance of the resulting detector is experimentally evaluated using simulated and real hyperspectral data collected by the NASA/Jet Propulsion Laboratory Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the DLR Reflective Optics System Imaging Spectrometer (ROSIS). KeywordsTarget detection, Hyperspectral imaging, Mathematical Morphology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles

This paper presents a new approach to the analysis of hyperspectral images, a new class of image data that is mainly used in remote sensing applications. The method is based on the generalization of concepts from mathematical morphology to multi-channel imagery. A new vector organization scheme is described, and fundamental morphological vector operations are de#ned by extension. Theoretical de...

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001